

Solid Carbon Conversion (Biomass & MSW) via CO₂

Marco J. Castaldi

Department of Earth & Environmental Engineering Henry Krumb School of Mines, Columbia University Need refs and atom economy

Workshop on lignocellulosic biofuels using thermochemical conversion

June 14-15 Auburn University

Energy

- Two-fold increase in energy consumption (*demand*)
 - From 472 exajoules to 791-1107 over next 40 years
- The world is sensitive to energy supply (*new paradigm*)
 - Security, Procurement \rightarrow supply chain disruptions
- CO₂ atmospheric concentrations are rising (*environment*)
 - Prevent carbon dioxide emissions \rightarrow sequester, create value

The Need

- Carbon neutral energy production
- Clean chemical production (e.g. H₂)
- Reduce the dependence on single feedstock
 - Indigenous source of fuel, distributed sources
- Power and chemicals produced must be economically attractive compared to current sources.

Working the Atom Economy

Biomass + H₂ \rightarrow CO + H₂ $\eta_{atom} = 100\%$ Biomass + CO₂ \rightarrow CO + H₂ $\eta_{atom} = 100\%$ • Energy and water savings

20% of 2008 total transportation energy demand incorporates CO₂
•Remove 308 million vehicles from the road
•Eliminate CO₂ emissions from 57 - 1000 MW coal-fired power plants.

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002. *Net foscil-fuel electrical imports. *Biomassicher includes wood, wasie, aloohol, ceothermal, solar, and wind. June 2004 Lawrence Livermore National Laboratory http://eed.linl.gov/flow

Conversion Problem

Enhanced Gasification

• Production begins to level off above 20% CO₂

Butterman, H. C.; Castaldi, M. J., Environmental Engineering Science 2009, 26, (4), 703-713

Value: CO₂ Enhanced Char Burnout

Walnut Shells: 0% CO₂ Walnut Shells: 30% CO₂

Douglas Fir: **0% CO**₂ | Douglas Fir: **30% CO**₂

- Identical time on stream, reaction temperature profile, total flow rate
- Physical evidence of more efficient gasification with CO₂

~20% biomass remaining

Douglas Fir: **30% CO**

inorganic ash

Observed for all samples tested

Butterman, H. C.; Castaldi, M.J, Environ. Sci. Technol., 2009, 43 (23), pp 9030-9037

Actual Biomass Steam vs CO₂ @ 1°C min⁻¹

- low temperature pyrolysis behavior is similar for CO₂ & H₂O
- Blue Fir Needles, higher lignin begins pyrolytic degradation earlier (200°C)
 → slower rate of decay
- Poplar wood, higher cellulose begins pyrolytic degradation later (250°C)
 → faster decomposition rate
- Greatest difference between H₂O and CO₂ gasification after 900°C → < 2% ash remains using CO₂

Lignin Decomposition

Cellulose Decomposition

Major Gasification Reactions

Low Temperature

Water Gas Shift

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

Methanation

 $C + 2H_2 \rightleftharpoons CH_4$

 $2\text{CO} + 2\text{H}_2 \leftrightarrows \text{CH}_4 + \text{CO}_2$

 $CO + 3H_2 \rightleftharpoons CH_4 + H_2O$

Steam Gasification

 $C + H_2O \rightleftharpoons H_2 + CO$

<u>High Temperature</u> **Steam Gasification**

 $C + H_2O \rightleftharpoons H_2 + CO$

Boudouard $C + CO_2 \rightleftharpoons 2CO$

Char Burnout: O (Biomass/Steam) $C + \frac{1}{2}O_2 \rightleftharpoons CO$

Reverse Water Gas Shift $CO_2 + H_2 \rightleftharpoons CO + H_2O$

C

Representative Kinetic Parameters CO ₂ Pyrolysis (110-450°C)				
	Sample	Ao	Eave	n
		$(\sec^{-1} K^{-1/2})$	$(kJ mole^{-1})$	
• Cellulose	Lignin (CO ₂)	21.13	49.3	3
	Lignin (N ₂ /H ₂ O)	316.89	47.8	3
	Cellulose	1.40xE+18	219.0	1
	Poplar	1.92xE+09	71.8	1
	Douglas Fir	3.82xE+10	69.9	1
	Pine	6.65xE+05	65.1	1
	Maple	6.28xE+05	58.0	1
	Oak	4.15xE+12	54.5	1
	Spruce	2.89xE+10	54.3	1
• Lignin	A. Beachgrass	1.88xE+08	46.2	2
	Maple Bark	1.41xE+03	42.9	2
	Alfalfa	1.18xE+03	33.1	2
	Blue Fir Needles	1.83xE+03	31.6	2
	Green Pine Needles	47.24	27.6	2

C,

CO Comparison

CO₂/C Simulation

Butterman and Castaldi, Indus. & Eng, Chem. Res, (2007) 47, 8875-8886

CO₂/C Simulation

Butterman and Castaldi, Indus. & Eng, Chem. Res, (2007) 47, 8875-8886

CH₄ Comparison

CO₂/C Simulation

Butterman and Castaldi, Indus. & Eng, Chem. Res, (2007) 47, 8875-8886

Combustion & Catalysis Laboratory

So What is happening? Why is CO₂ better?

Char Pore Development- Enhanced Char Burnout With CO₂

Lignin 0% CO₂ -H₂O/N₂ 1°C/min, 22-860°C Lignin 100% CO₂ 1°C/min 22-860°C Lignin 100% CO₂ 1°C/min, 22-930°C

 $R = A e^{\frac{-E_{act}}{RT}} \prod C_i^{\alpha}$

Auburn/NSF/biomass 6/14/12

Where; $A = f(SA, V_{pore}, etc)$

Butterman, H.C.; Castaldi, M.J., Env. Eng. Sci., 2010, 27(7): 539-555

Physical Changes in Biomass during Gasification

Removed - publication in preparation

Achieving high surface area: Why is sintering avoided with CO_2 ?

Removed - publication in preparation

CO₂ impact on gasification products

Combustion & Catalysis Laboratory

% CO₂ added to gasification influent

6

Lignin & Cellulose w/ CO_2 @ 1 & 100°C min⁻¹

• Thermally process the cellulosic at low temperature

- Treat remaining lignin thermally and chemically via CO₂
- Steam: ~40% of the lignin still unprocessed to volatiles by 930°C
- CO₂: 100% conversion by 930°C
- Can optimize the percent of lignin in the pyrolytic char
- Thermal processing heating rate for steam gasification

AubuFigurs 3 Aibigain & Qalylose CO2 gasification

Oil Synthesis: Aromatic Adjustment

Removed - publication in preparation

Auburn/NSF/biomass 6/14/12

Kwon, E., and Castaldi, M.J. (2008). NAWTEC17, Chantilly, VA, United States, May 18-20, 2009.

Ballistic Heating @ ~100°C min⁻¹

Combustion & Catalysis Laboratory

Chemical Species with Ballistic Heating @ ~700°C min⁻¹

Higher Order Hydrocarbon Results

Removed - publication in preparation

- Trend toward dehydrogenation as temperature increases
- Commensurate H₂ increase

Combustion & Catalysis Laboratory

6

MSW DATA

Mass % vs Temp for Varius Amounts of CO₂

Kwon, E., and Castaldi, M.J. (2008). *NAWTEC17*, Chantilly, VA, United States, May 18-20, 2009.

Auburn/NSF/biomass 6/14/12

Kwon, Eilhann; Castaldi, Marco J. Environ. Sci. Technol. 2009, 43(15), 5996-6002.

• **Decrease** in H₂ production with CO₂

Combustion & Catalysis Laboratory

6

Figure 21. H₂ Evolution Depression from Montana coal using CO₂ (S/C = 10)

Figure 22. H₂ Evolution Depression from Wyoming coal using CO₂ (S/C = 9)

• **Increase** in CO production with CO₂

Figure 23.CO Evolution Enhancement from Montana coal using CO₂ (S/C = 10)

Figure 24.CO Evolution Enhancement from Wyoming coal using CO₂ (S/C = 9)

Conclusions

- Biomass, waste, coal solid carbon fuels can be efficiently converted using CO₂ instead of steam
- •CO₂ helps in thermal separation of lignin and cellulose
- CO₂ enhances CO production, suppresses H₂
 - Improved char burnout
- Modeling matches data
- Kinetic parameter estimation suggests reaction order 1.0 for cellulose and 3.0 for lignin
- Adjustment of aromatic content in liquid portion

Acknowledgments

Dr. Eilhann Kwon Dr. Heidi Butterman Professor John Dooher (Adelphi University) Kelly Westby

You, the audience for listening